The bipartite edge frustration of hierarchical product of graphs
نویسندگان
چکیده
The smallest number of edges that have to be deleted from a graph G to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper our recent results on computing this quantity for hierarchical product of graphs are reported. We also present a fast algorithm for computing edge frustration index of (3, 6)−fullerene graphs.
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملThe bipartite edge frustration of composite graphs
The smallest number of edges that have to be deleted from a graph to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and denoted by φ(G). In this paper we determine the bipartite edge frustration of some classes of composite graphs. © 2010 Elsevier B.V. All rights reserved.
متن کاملNew Expansion for Certain Isomers of Various Classes of Fullerenes
This paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. Furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct innite families of fullerenes generated by the oered process.
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 45 شماره
صفحات -
تاریخ انتشار 2014